From Node Embedding To Community Embedding
نویسندگان
چکیده
In this paper, we introduce a new setting for graph embedding, which considers embedding communities instead of individual nodes. Community embedding is useful as a natural community representation for applications, and it provides an exciting opportunity to improve community detection. Specifically, we see the interaction between community embedding and detection as a closed loop, through node embedding. On the one hand, we rely on node embedding to generate good communities and thus meaningful community embedding. On the other hand, we apply community embedding to improve node embedding through a novel community-aware higher-order proximity. This closed loop enables us to improve community embedding, community detection and node embedding at the same time. Guided by this insight, we propose ComE, the first community embedding method so far as we know. We evaluate ComE on multiple real-world data sets, and show ComE outperforms the state-of-theart baselines in both tasks of community prediction and node classification. Our code is available at https://github.com/andompesta/ nodeembedding-to-communityembedding.
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملSteganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images
In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...
متن کاملEffects of Directional Subdividing on adaptive Grid-Embedding (RESEARCH NOTE)
The effects of using both directions and directional subdividing on adaptive gridembedding on the computational time and the number of grid points required for the same accuracy are considered. Directional subdividing is used from the beginning of the adaptation procedure without any restriction. To avoid the complication of unstructured grid, the semi-structured grid was used. It is used to so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.09950 شماره
صفحات -
تاریخ انتشار 2016